
Ichno Documentation

Ichno Solutions

Jul 22, 2020

GENERAL VIEW

1 General View 3

2 Tips 5
2.1 Keys . 5
2.2 Labels . 6

3 Open API Specification 7

4 API Key 9

5 Posting Versions 11
5.1 Post Struct . 11

6 Quering Changes 13
6.1 Query by properties . 14

7 Aggregations 17
7.1 Structuring Aggregations . 17
7.2 Aggregations Types . 17

8 Discover View 23
8.1 Changes Tree . 23
8.2 Json Version . 23
8.3 Chain View . 23
8.4 Quering Versions . 23

9 User Permissions 25

10 API Keys 27

11 Date Format/Pattern 29
11.1 Text . 30
11.2 Number . 30
11.3 Number/Text . 31
11.4 Fraction . 31
11.5 Year . 31
11.6 ZoneId . 31
11.7 Zone names . 31

i

11.8 Offset X and x . 31
11.9 Offset O . 31
11.10 Offset Z . 32
11.11 Optional section . 32
11.12 Pad modifier . 32

12 JSON Path 33
12.1 Examples . 33
12.2 JSON Path Regex . 34

13 Regular expression syntax 35
13.1 Reserved characters . 35
13.2 Standard operators . 35
13.3 Unsupported operators . 36

ii

Ichno Documentation

Ichno is a solution, provided as a Sass model, to facilitate tracking changes and the history storage of object instances
or database entries.

You only need to send the instance of the object, with its current state, and the changes will be automatically detected
and will be available for later searches.

It will provide the following features:

Track the changes easily
Centralized history logic. Save your team time and computational resources with history feature implementation.
Lógica centralizada de histórico. Economize tempo da equipe técnica e de recursos computacionais com a
implementação de funcionalidades de histórico.

Search for versions and changes
Through a simple interface, or an API to integrate, search for changes in instances of database records.

GENERAL VIEW 1

Ichno Documentation

2 GENERAL VIEW

CHAPTER 1

General View

3

Ichno Documentation

4 Chapter 1. General View

CHAPTER 2

Tips

2.1 Keys

2.1.1 Key on registering instances

Keys are used to identify a single instance of your objects. As you can register versions from many subsets of instances,
you should send the name of instance subset as a part of key, to avoid keys conflicts. This subset can be the table or
package name. For example, if you have a subset of users and another subset of products, the correct way to send this
entities, through API, is:

User 1 User 2

{
keys: [
{ subset: 'user' },
{ id: 1 }

],
object: {
name: 'User Name',
...

}
}

{
keys: [

{ subset: 'user' },
{ id: 2 }

],
object: {

name: 'User Name',
...

}
}

5

Ichno Documentation

Product 1 Product 2

{
keys: [
{ subset: 'product' },
{ id: 1 }

],
object: {
name: 'Product Name',
...

}
}

{
keys: [

{ subset: 'product' },
{ id: 2 }

],
object: {

name: 'Product Name',
...

}
}

2.1.2 Key on querying instances

You can query by keys using only a subset of keys registered with your instances. In the same example used above, if
you need ti query all changes made in the ‘user’ subset, you can use the following json to get that:

{
keys: [
{ subset: 'user' }

]
}

2.2 Labels

Labels are useful to add some data that you want to query for. For example, if you want to register the user who made
those changes, you can use labels, allowing you to search for all change made by a user.

6 Chapter 2. Tips

CHAPTER 3

Open API Specification

Ichno provides an API to be used to integrate easily with. The swagger definition can be accessed . Remember that
you need an API Key to communicate, even using the Swagger Interface.

7

Ichno Documentation

8 Chapter 3. Open API Specification

CHAPTER 4

API Key

To post and query versions, you need to send your api-key through the header, in the X-API-KEY entry. You can see
how to manage your keys at Api Keys.

9

../admin/admin.html#api-keys

Ichno Documentation

10 Chapter 4. API Key

CHAPTER 5

Posting Versions

Two endpoints to register instance versions is provided:

1. Asynchronous Post POST /api/v1/version/async

Using this endpoint, the api will response almost instantly, and the version will be processed asynchronously, and will
be ready to be queried in few seconds.

2. Synchronous Post POST /api/v1/version

Using this endpoint, the version will be processed synchronously with a bigger response time. Use this endpoint if
you need this versions ready to be queried right after the register post response.

5.1 Post Struct

More than only your object instance, you can send other fields to store aditional information about the posted version?

11

Ichno Documentation

Field Type Required Description
id UUID Yes

The identifier for this version.
This id must be generated by client. It allows the client
application to refer to the posted version, in a asynchronous
scenario, even if is not processed by Ichno yeat.

object object Yes

The instance to be register.
Send the current state of this instance, after all changes
applied. Ichno will compare with the version registered
previously and compute all changes.

metadata object No

Additional data to this version.
Use this field to add some additional data to your version.
The values in this field cannot be queried, but can be
retrieved when you need.

keys

[string]:
string |
number |
boolean

(Key Value
List)

Yes

Unique identifier of the instance in the clients system.
Send the id’s of this instance. It is a list to allow sending
objects with composite keys. If you are registering versions
from diferent instance types, you must send a type identifier
as a key too, to avoid conflicts between too instances, with
diferent types and same identifier.

labels

[string]:
string |
number |
boolean

(Key Value
List)

No

Version label.
Send labels to this version. Labels are additional data for this
version but, diferent from metadate, these labels can be used
as a filter. You can use this, for example, to send the user id
who is changing the instance, enabling you to filter all
changes made by a specific user.

12 Chapter 5. Posting Versions

CHAPTER 6

Quering Changes

After have your instance versions registered, it is possible to query changes using the following parameters:

13

Ichno Documentation

Field Type Required Description
keys

[string]:
string |
number |
boolean

(Key Value
List)

No

Unique identifier of the instance in the clients system. Use
the same values used to register the instance. If you are using
composite keys, its possible to send all keys or a subset of
these keys.

startDate

date

(yyyy-MM-
ddThh:mm:ss)

No

Start date for date range.

endDate

date

(yyyy-MM-
ddThh:mm:ss)

No

End date for date range.

labels

[string]:
string |
number |
boolean

(Key Value
List)

No

Change labels.

properties

object

No Filter changes by properties

start

integer

No Number of register to skip on this query. Useful to pagination.

length

integer

No Number of register that must be returned. Useful to pagina-
tion.

6.1 Query by properties

Ichno also allow you to query by properties, allowing you to query changes made on specific property. Properties
query parameters are send through an object in the property properties on change query endpoint:

14 Chapter 6. Quering Changes

Ichno Documentation

Field Type Required Description
path

[string |
number |
boolean]

(array)

No

Property path.
For example, if you are registering version for the following
object:

{
name: 'John Hanson',
address: {

street: 'The Great, Ave',
number: 153

}
}

You can query the name changes using the following array as
parameter:
['name']

Or this one to filter by street name changes:
['address', 'street']

newValue

string |
number |
boolean

No

Filter properties by the new value.

oldValue

string |
number |
boolean

No

Filter properties by the old value.

6.1. Query by properties 15

Ichno Documentation

16 Chapter 6. Quering Changes

CHAPTER 7

Aggregations

Aggregations provide aggregated data based on a search query. It is based on simple building blocks called aggrega-
tions, that can be composed in order to build complex summaries of the data.

An aggregation can be seen as a unit-of-work that builds analytic information over a set of versions. The context of the
execution defines what this document set is (e.g. a top-level aggregation executes within the context of the executed
query/filters of the search request).

7.1 Structuring Aggregations

The following snippet captures the basic structure of aggregations:

{
"aggregations" : {

"<aggregation_name>" : {
"aggregationTarget": "<aggregation_target>",
"aggregationType: "<aggregation_type>"
[,"parameters" : {

["<parameter_1>" : { ... }]*
}]?
[,"aggregations" : { [<sub_aggregation>]+ }]?

}
[,"<aggregation_name_2>" : { ... }]*

}
}

7.2 Aggregations Types

There are many different types of aggregations, each with its own purpose and output.

17

Ichno Documentation

7.2.1 Date Histogram by Version

The date histogram by version shows the number of versions posted in a specific date value within you changes dataset.

Parameters

Name Type Required Description
format string No Se avaiable formats in Date Format/Pattern
interval string No

Interval period for aggregation. Avaiable values are:
- Second
- Minute
- Hour
- Day
- Week
- Month
- Quarter
- Year

Example

Request

{
"aggregations": {
"versions_datehistogram": {

"aggregationType": "VersionDateHistogram",
"parameters": {

"format": "yyyy",
"interval": "Year"

}
}

}
}

Response

{
"aggregations": {
"versions_datehistogram": {

"key": null,
"count": 307065,
"results": [

{
"key": "2019",
"count": 155095,
"results": null,

(continues on next page)

18 Chapter 7. Aggregations

Ichno Documentation

(continued from previous page)

"aggregations": null
},
{
"key": "2020",
"count": 151970,
"results": null,
"aggregations": null

}
],
"aggregations": null

}
}

}

7.2.2 Property Name

Aggregates by properties.

Parameters

Name Type Required Description
jsonPath string No Filter the properties that must be included in aggregation.

Read about Json Paths in JSON Path.
depth integer No If the object contains objects as properties, you can define how

many levels should be included in the aggregation.
size integer No Number of aggregation to be returned

Example

Request

{
"length": 0,
"aggregations": {
"properties_names": {

"aggregationType": "Property",
"parameters": {

"depth": 0,
"jsonPath": "$['Documents']['[^('\\])]*']",
"size": 5

}
}

}
}

Response

7.2. Aggregations Types 19

Ichno Documentation

{
"total": 315025,
"data": [],
"aggregations": {
"properties_names": {

"count": 115814,
"results": [

{
"key": "$['Documents']['edc17b99-d956-4300-8b0e-8aa60f9cdb94']",
"count": 23818

},
{
"key": "$['Documents']['8dfc2491-dab0-4d36-8f1a-bf96d4002e91']",
"count": 23568

},
{
"key": "$['Documents']['b93acc29-f93c-4968-903c-6fa961497969']",
"count": 23545

},
{
"key": "$['Documents']['ba86b58b-1899-4289-b191-b638586eddf9']",
"count": 22459

},
{
"key": "$['Documents']['7b526f64-413e-4dca-8120-22ab98b33ab8']",
"count": 22424

}
]

}
}

}

7.2.3 Label Values

Aggregates label values.

Parameters

Name Type Required Description
name string No Label name. Will include only values with this label name.
size integer No Number of aggregation to be returned

Example

Request

{
"length": 0,
"aggregations": {
"labels_aggregations": {

"aggregationType": "LabelValue",

(continues on next page)

20 Chapter 7. Aggregations

Ichno Documentation

(continued from previous page)

"parameters": {
"name": "userName",
"size": 5

}
}

}
}

Response

{
"total": 315025,
"data": [],
"aggregations": {
"labels_aggregations": {

"count": 2920,
"results": [

{
"key": "Adriano Queiroz",
"count": 810

},
{
"key": "Mayara Caldeira",
"count": 743

},
{
"key": "Priscila Batista",
"count": 603

},
{
"key": "Maria Eduarda",
"count": 397

},
{
"key": "Bryan Santos",
"count": 367

}
]

}
}

}

7.2. Aggregations Types 21

Ichno Documentation

22 Chapter 7. Aggregations

CHAPTER 8

Discover View

With Discover View you can filter versions, view the changes, the posted json instance and navigate through a change
chain.

8.1 Changes Tree

In changes tree view you can navigate through all posted versions and their labels and metadata.

8.2 Json Version

With json view, you can see the json of the instance posted to register the version.

8.3 Chain View

In chain view, you can navigate through versions from the same instance and see the changes made on properties.

8.4 Quering Versions

Using filters you can filter by keys, labels and properties values. Use multiple filters to look for the exact instance that
you want.

23

Ichno Documentation

24 Chapter 8. Discover View

CHAPTER 9

User Permissions

You can grant permission to other users to access Ichno. You only need to provide a valid e-mail, and Ichno will invite
him to sign up and access your dashboard. User administration is accessed through Settings menu.

25

Ichno Documentation

26 Chapter 9. User Permissions

CHAPTER 10

API Keys

API Keys allow other systems to integrate with Ichno, through a API, easily. You can manage API Keys through
Settings menu.

27

Ichno Documentation

28 Chapter 10. API Keys

CHAPTER 11

Date Format/Pattern

Note: this information was copied from

All ASCII letters are reserved as format pattern letters, which are defined as follows:

Stymbol Meaning Presentation Examples
G era text AD; Anno Domini; A
u year year 2004; 04
y year-of-era year 2004; 04
D day-of-year number 189
M/L month-of-year number/text 7; 07; Jul; July; J
d day-of-month number 10
Q/q quarter-of-

year
number/text 3; 03; Q3; 3rd quarter

Y week-based-
year

year 1996; 96

w week-of-
week-based-
year

number 27

W week-of-
month

number 4

E day-of-week text Tue; Tuesday; T
e/c localized day-

of-week
number/text 2; 02; Tue; Tuesday; T

F week-of-
month

number 3

a am-pm-of-day text PM
h clock-hour-

of-am-pm
(1-12)

number 12

Continued on next page

29

Ichno Documentation

Table 1 – continued from previous page
Stymbol Meaning Presentation Examples
K hour-of-am-

pm (0-11)
number 0

k clock-hour-
of-am-pm
(1-24)

number 0

H hour-of-day
(0-23)

number 0

m minute-of-
hour

number 30

s second-of-
minute

number 55

S fraction-of-
second

fraction 978

A milli-of-day number 1234
n nano-of-

second
number 987654321

N nano-of-day number 1234000000
V time-zone ID zone-id America/Los_Angeles; Z; -08:30
z time-zone

name
zone-name Pacific Standard Time; PST

O localized
zone-offset

offset-O GMT+8; GMT+08:00; UTC-08:00;

X zone-offset Z
for zero

offset-X Z; -08; -0830; -08:30; -083015; -08:30:15;

x zone-offset offset-x +0000; -08; -0830; -08:30; -083015; -08:30:15;
Z zone-offset offset-Z +0000; -0800; -08:00;
p pad next pad modifier 1
‘ escape for text delimiter ‘’
single quote literal ‘ [
optional
section start

] optional
section end

#

reserved for
future use

{ reserved for
future use

}

The count of pattern letters determines the format.

11.1 Text

The text style is determined based on the number of pattern letters used. Less than 4 pattern letters will use the short
form. Exactly 4 pattern letters will use the full form. Exactly 5 pattern letters will use the narrow form. Pattern letters
L, c, and q specify the stand-alone form of the text styles.

11.2 Number

If the count of letters is one, then the value is output using the minimum number of digits and without padding.
Otherwise, the count of digits is used as the width of the output field, with the value zero-padded as necessary. The
following pattern letters have constraints on the count of letters. Only one letter of c and F can be specified. Up to two
letters of d, H, h, K, k, m, and s can be specified. Up to three letters of D can be specified.

30 Chapter 11. Date Format/Pattern

Ichno Documentation

11.3 Number/Text

If the count of pattern letters is 3 or greater, use the Text rules above. Otherwise use the Number rules above.

11.4 Fraction

Outputs the nano-of-second field as a fraction-of-second. The nano-of-second value has nine digits, thus the count
of pattern letters is from 1 to 9. If it is less than 9, then the nano-of-second value is truncated, with only the most
significant digits being output.

11.5 Year

The count of letters determines the minimum field width below which padding is used. If the count of letters is two,
then a reduced two digit form is used. For printing, this outputs the rightmost two digits. For parsing, this will parse
using the base value of 2000, resulting in a year within the range 2000 to 2099 inclusive. If the count of letters is less
than four (but not two), then the sign is only output for negative years as per SignStyle.NORMAL. Otherwise, the sign
is output if the pad width is exceeded, as per SignStyle.EXCEEDS_PAD.

11.6 ZoneId

This outputs the time-zone ID, such as Europe/Paris. If the count of letters is two, then the time-zone ID is output.
Any other count of letters throws IllegalArgumentException.

11.7 Zone names

This outputs the display name of the time-zone ID. If the count of letters is one, two or three, then the short name is
output. If the count of letters is four, then the full name is output. Five or more letters throws IllegalArgumentExcep-
tion.

11.8 Offset X and x

This formats the offset based on the number of pattern letters. One letter outputs just the hour, such as +01, unless the
minute is non-zero in which case the minute is also output, such as +0130. Two letters outputs the hour and minute,
without a colon, such as +0130. Three letters outputs the hour and minute, with a colon, such as +01:30. Four letters
outputs the hour and minute and optional second, without a colon, such as +013015. Five letters outputs the hour and
minute and optional second, with a colon, such as +01:30:15. Six or more letters throws IllegalArgumentException.
Pattern letter X (upper case) will output Z when the offset to be output would be zero, whereas pattern letter x (lower
case) will output +00, +0000, or +00:00.

11.9 Offset O

This formats the localized offset based on the number of pattern letters. One letter outputs the short form of the
localized offset, which is localized offset text, such as GMT, with hour without leading zero, optional 2-digit minute

11.3. Number/Text 31

Ichno Documentation

and second if non-zero, and colon, for example GMT+8. Four letters outputs the full form, which is localized offset
text, such as GMT, with 2-digit hour and minute field, optional second field if non-zero, and colon, for example
GMT+08:00. Any other count of letters throws IllegalArgumentException.

11.10 Offset Z

This formats the offset based on the number of pattern letters. One, two or three letters outputs the hour and minute,
without a colon, such as +0130. The output will be +0000 when the offset is zero. Four letters outputs the full form of
localized offset, equivalent to four letters of Offset-O. The output will be the corresponding localized offset text if the
offset is zero. Five letters outputs the hour, minute, with optional second if non-zero, with colon. It outputs Z if the
offset is zero. Six or more letters throws IllegalArgumentException.

11.11 Optional section

The optional section markers work exactly like calling DateTimeFormatterBuilder.optionalStart() and DateTimeFor-
matterBuilder.optionalEnd().

11.12 Pad modifier

Modifies the pattern that immediately follows to be padded with spaces. The pad width is determined by the number
of pattern letters. This is the same as calling DateTimeFormatterBuilder.padNext(int).

For example, ppH outputs the hour-of-day padded on the left with spaces to a width of 2.

Any unrecognized letter is an error. Any non-letter character, other than [,], {, }, # and the single quote will be output
directly. Despite this, it is recommended to use single quotes around all characters that you want to output directly to
ensure that future changes do not break your application.

32 Chapter 11. Date Format/Pattern

CHAPTER 12

JSON Path

Json paths is used in Ichno to identify an property uniquelly. It’s important to distinguish that the concept applied
in Ichno is different from other libraries avaiable, which use json paths as a language to filter properties and objects
inside an json object.

12.1 Examples

Given the json.

{
"store": {

"book": [
{

"category": "reference",
"author": "Nigel Rees",
"title": "Sayings of the Century",
"price": 8.95

},
{

"category": "fiction",
"author": "Evelyn Waugh",
"title": "Sword of Honour",
"price": 12.99

}
],
"bicycle": {

"color": "red",
"price": 19.95

}
},
"expensive": 10

}

33

Ichno Documentation

Json Path Property Value
$['expensive'] 10
$['store']['book'][0]['author'] “Nigel Rees”
$['store']['book'][1]['price'] 12.99
$['store']['book']['bicycle']['bicycle']“red”

12.2 JSON Path Regex

In some queries and aggregations, is possible to use regex in properties names to expand the possibilities of filter.

Given the following sample:

{
"store": {

"book": [
{

"category": "reference",
"sub-category": "reference",
"author": "Nigel Rees",
"title": "Sayings of the Century",
"price": 8.95

},
{

"category": "fiction",
"sub-category": "fiction",
"author": "Evelyn Waugh",
"title": "Sword of Honour",
"price": 12.99

}
]

},
"expensive": 10

}

If you use the regex $['store']['book'][.*]['.*category'] your query will include all values of ‘cate-
gory’ or ‘sub-category’ book properties in results.

For more information about regular expressions, see Regular expression syntax.

34 Chapter 12. JSON Path

CHAPTER 13

Regular expression syntax

Note: this information was based on

A is a way to match patterns in data using placeholder characters, called operators.

Ichno uses ’s regular expression engine to parse these queries.

13.1 Reserved characters

Lucene’s regular expression engine supports all Unicode characters. However, the following characters are reserved
as operators::

. ? + * | { } [] () " \

Depending on the optional operators enabled, the following characters may also be reserved::

@ & < > ~

To use one of these characters literally, escape it with a preceding backslash or surround it with double quotes. For
example::

\@ # renders as a literal '@'
\\ # renders as a literal '\'
"john@smith.com" # renders as 'john@smith.com'

13.2 Standard operators

Lucene’s regular expression engine does not use the library, but it does support the following standard operators.

35

Ichno Documentation

. Matches any character. For example:

ab. # matches ‘aba’, ‘abb’, ‘abz’, etc.

? Repeat the preceding character zero or one times. Often used to make the preceding character optional. For example:

abc? # matches ‘ab’ and ‘abc’

+ Repeat the preceding character one or more times. For example:

ab+ # matches ‘ab’, ‘abb’, ‘abbb’, etc.

* Repeat the preceding character zero or more times. For example:

ab* # matches ‘a’, ‘ab’, ‘abb’, ‘abbb’, etc.

{} Minimum and maximum number of times the preceding character can repeat. For example:

a{2} # matches ‘aa’ a{2,4} # matches ‘aa’, ‘aaa’, and ‘aaaa’ a{2,} # matches ‘a’ repeated two or more times

| OR operator. The match will succeed if the longest pattern on either the left side OR the right side matches. For
example:

abc|xyz # matches ‘abc’ and ‘xyz’

(. . .) Forms a group. You can use a group to treat part of the expression as a single character. For example:

abc(def)? # matches ‘abc’ and ‘abcdef’ but not ‘abcd’

[. . .] Match one of the characters in the brackets. For example:

[abc] # matches ‘a’, ‘b’, ‘c’

Inside the brackets, - indicates a range unless - is the first character or escaped. For example:

[a-c] # matches ‘a’, ‘b’, or ‘c’ [-abc] # ‘-‘ is first character. Matches ‘-‘, ‘a’, ‘b’, or ‘c’ [abc-] # Escapes ‘-‘.
Matches ‘a’, ‘b’, ‘c’, or ‘-‘

A ^ before a character in the brackets negates the character or range. For example:

[^abc] # matches any character except ‘a’, ‘b’, or ‘c’ [^a-c] # matches any character except ‘a’, ‘b’, or ‘c’ [^-abc]
matches any character except ‘-‘, ‘a’, ‘b’, or ‘c’ [^abc-] # matches any character except ‘a’, ‘b’, ‘c’, or ‘-‘

13.3 Unsupported operators

Lucene’s regular expression engine does not support anchor operators, such as ^ (beginning of line) or $ (end of line).
To match a term, the regular expression must match the entire string.

36 Chapter 13. Regular expression syntax

	General View
	Tips
	Keys
	Labels

	Open API Specification
	API Key
	Posting Versions
	Post Struct

	Quering Changes
	Query by properties

	Aggregations
	Structuring Aggregations
	Aggregations Types

	Discover View
	Changes Tree
	Json Version
	Chain View
	Quering Versions

	User Permissions
	API Keys
	Date Format/Pattern
	Text
	Number
	Number/Text
	Fraction
	Year
	ZoneId
	Zone names
	Offset X and x
	Offset O
	Offset Z
	Optional section
	Pad modifier

	JSON Path
	Examples
	JSON Path Regex

	Regular expression syntax
	Reserved characters
	Standard operators
	Unsupported operators

